hjarak titik H ke garis 1)1 4 Diketahui kubus ABCD.EFGH dengan rusuk 8c11 Titik A1 adalah titik 1 1 17c Tentukan jarak A1 ke EG uran berikut
Diketahuigaris 2x + 4y - 3 = 0 didilatasikan dengan skala -2 terhadap titik pusat 2 -4 tentukan bayangan garis? . bagaimana saran anda terhadap bank yang sakit tersebut?. 3. Suhardi ingin membeli 8 lembar sertifikat deposito nominal.
AOadalah jarak titik A ke garis KT Pada gambar diatas jarak titik O ke garis KT ditunjukkan garis warna merah AO. Untuk menghitung panjang AO, terlebih dahulu kita tentukan panjang OT dan KT. Menentukan panjang OT: OT = 1/2 OQ OT = 1/2 . 12 √ 2 cm = 6 √ 2 cm Menentukan panjang KT KT 2 = KO 2 + OT 2 KT 2 = 12 2 + (6 √ 2 ) 2 = 144 + 72 = 216
b Jarak H ke DF Buat segitiga HDF dan segitiga HDF adalah segitiga siku-siku di H Ukuran sisi-sisinya HD = 10 cm => rusuk kubus HF = 10√2 cm => diagonal sisi kubus DF = 10√3 cm => diagonal ruang Jarak H ke DF adalah tinggi segitiga HDF dengan alas DF Jika alasnya HF maka tingginya HD Jika alasnya DF maka tingginya x
Ingat Jarak titik ke garis adalah lintasan terpendek yang menghubungkan titik dan tegak lurus terhadap garis. Panjang diagonal ruang kubus yang memiliki rusuk adalah .; Panjang diagonal bidang kubus yang memiliki rusuk adalah .; Jika dalam suatu segitiga terdapat 2 garis yang dapat dijadikan tinggi ( dan ) dan 2 garis yang dapat dijadikan alas ( dan ), maka berlaku .
Jaraktitik A ke garis g adalah panjang dari AP. Jadi, jarak antara titik dengan garis merupakan panjang ruas garis yang ditarik dari titik tersebut tegak lurus terhadap garis itu. Untuk memantapkan pemahaman Anda tentang jarak titik ke garis pada bangun ruang dimensi tiga, silahkan perhatikan contoh soal berikut ini.
Jaraktitik h ke garis df alternatif penyelesaian gambar . Jarak titik f ke garis ac b. Jarak titik h ke garis df adalah cm. Of = oh = a . Diketahui kubus panjang ab = 10 cm. Play this game to review mathematics. Gh merupakan rusuk kubus yang panjangnya 12 cm. Jarak titik h ke garis df. Jarak titik h ke garis df!
Pembahasan Jarak Titik H Ke Garis Df Ingat! Jarak titik ke garis adalah lintasan terpendek yang menghubungkan titik dan tegak lurus terhadap garis. Panjang diagonal ruang kubus yang memiliki rusuk adalah . Panjang diagonal bidang kubus yang memiliki rusuk adalah . Jika dalam suatu segitiga terdapat 2 garis yang dapat dijadikan tinggi ( dan
Jawaban3.9 /5 573 DB45 ΔDHF siku siku di H buat T pada DF sehingga HT tegak lurus DF HT = jarak H ke DF DH = 6 DF = 6√3 HF = 6√2 HT . DF = DH . HF HT (6√3) = 6 (6√2) HT = 6 (6√2)/6√3 HT= 2√6 HT. Df=Dh. Hf itu rumus apa namanya? Rumus Luas ΔDHF 6 (6√2) ada gambarnya g kak?? bener gak ini ? Lihat komentar lainnya
Titikapi parabola terletak pada garis yang melalui puncak parabola tegaklurus garis arah dan jarak puncak ke titik api sama dengan jarak puncak kegaris arah.MAT. 10. Irisan Kerucut 52Jarak A ke garis arah adalah d= 18 ? 15 ? 1 = 34 (Gunakan jarak titik ke 9 ? 25garis)Persamaan garis melalui A dan tegak lurus garis arah adalah:Y+3= - 5 (x-6
4SFwmLG. Kelas 12 SMADimensi TigaJarak Titik ke GarisDiketahui kubus dengan panjang rusuk 6 cm. Jarak titik H ke garis DF adalah ... Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0157Diketahui kubus dengan panjang rusuk 10 cm. Tit...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...Teks videoHaiko fans, besok kita diberikan kubus dengan panjang rusuknya 6 cm di sini kita akan mencari jarak titik h ke garis DF jadi caranya kita hubungan Garis dari titik h ke ujung garis DF jadi hacker diketahui garis dan HF tergaris terbentuk segitiga siku-siku di a panjang AB adalah 6 sama dengan rusuk a episode diagonal sisi pada kubus rumusnya rak2 batik panjangnya 6 √ 2 adalah diagonal ruang pada kubus rumusnya rusuk √ 3 / panjangnya adalah 6 akar 3 jarak h ke garis DF adalah reaksi h ke DF sehingga siku-siku nih kita untuk mencari panjang ao kita menggunakan konsep segitigabahwa luas segitiga itu adalah setengah kali alas kali tinggi yang mana Allah sama tinggi harus saling tegak lurus nanti kita gunakan konsep luas dengan luas yang pertama kita gunakan tegak lurus yang ini nggak kita peroleh setengah tinggal ikan awas itu DM tingginya sama dengan luas Yang kedua kita gunakan siku-siku di A H sehingga setengah dikalikan alasnya tingginya DH Nah di sini tangannya dapat kita coret ya lalu panjang DF adalah 6 √ 3 dikalikan h o = 6 maka 2 dikalikan dengan 6 Anis inangnya dapat kita coret harus kita dapatkan bahwa o = 6 akar 2 per akar 3 dirasionalkan kitaAkar 3 per akar 3 sehingga kita peroleh 6 akar 6 per 3 yang mana 6 per 3 itu udah 2 jadi kita punya 2 √ 6 cm. Jadi TV ini jawabannya adalah sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Description DIMENSI TIGA JARAK TITIK KE GARIS Read the Text Version No Text Content! Pages 1 - 11 DIMENSI TIGA JARAK TITIK KE GARIS Sumber Buku Matematika Hal 13-17 B AC PETUNJUK PENYELESAIAN NOMOR 1 T 6cm E C D A 3cm B Jarak titik B ke rusuk TD digambarkan sebagai ruas garis BE. Untuk menentukannya kita bisa menggunakan tumus luas segitiga TBD Luas TBD=½BD. Tinggi Limas= Bagaimana mencari tinggi limas? PETUNJUK PENYELESAIAN NOMOR 2 13cm G 10cm Jarak titik B ke rusuk TE digambarkan sebagai ruas garis BG. Untuk menentukannya kita bisa menggunakan tumus luas segitiga TBE Luas TBe=½BE. Tinggi Limas= Mengapa BE=2xCD? Bagaimana mencari tinggi limas? PETUNJUK PENYELESAIAN NOMOR 3 T 10cm Jarak titik F ke AC adalah ruas garis FT T 10cm Jarak titik H ke DF adalah ruas garis HT PETUNJUK PENYELESAIAN NOMOR 4 N M 8cm Jarak M ke EG adalah ruas garis MN Hitung dahulu panjang ruas garis EG, EM dan GM. Apakah segitiga EGM siku-siku? Jika tidak anda dapat menghitung jarak tersebut dengan bantuan Aturan sinus, dan rumus luas segitiga pada Trigonometri PETUNJUK PENYELESAIAN NOMOR 5 S R Jarak T ke PQ adalah ruas garis TR Panjang ruas gasis TR dapat dihitung dengan memperhatikan segitiga TRS. Panjang RS dapat dihitung menggunakan asas kesebangunan segitiga ABS dan APR Author Top Search
Berikut ini adalah Kumpulan Soal Jarak Titik ke Garis pada Dimensi Tiga dan Pembahasannya. Bagi adik-adik silahkan dipelajari dan jangan lupa share/bagikan ke media sosial kalian, agar manfaat postingan ini dapat dirasakan oleh siswa/i yang lain. Terima Cara Belajar Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cocokkanlah jawaban kamu dengan pembahasan yang telah disediakan, dengan cara klik "LIHAT/TUTUP". SELAMAT BELAJAR Soal No. 1 Diketahui kubus rusuk-rusuknya 10 cm. Jarak titik F ke garis AC adalah … cm. A $3\sqrt{5}$ B $5\sqrt{2}$ C $5\sqrt{6}$ D $10\sqrt{2}$ E $10\sqrt{6}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Dari gambar, jarak titik F ke garis AC adalah jarak titik F ke titik Q yaitu panjang ruas garis FQ. Perhatikan segitiga ACF, AC = CF = AF = $10\sqrt{2}$ diagonal sisi kubus. Karena AF = CF maka garis tinggi FQ membagi dua sama panjang garis AC, sehingga diperoleh $\begin{align}AQ &= \frac{1}{2}AC \\ &= \frac{1}{2}.10\sqrt{2} \\ AQ &= 5\sqrt{2} \end{align}$ Pada segitiga AQF siku-siku di Q maka $\begin{align}FQ &= \sqrt{AF^2-AQ^2} \\ &= \sqrt{10\sqrt{2}^2-5\sqrt{2}^2} \\ &= \sqrt{200-50} \\ &= \sqrt{150} \\ FQ &= 5\sqrt{6} \end{align}$ Jadi, jarak titik F ke garis AC adalah $5\sqrt{6}$ cm. Jawaban C Soal No. 2 Diketahui kubus dengan panjang rusuk 6 cm. Jarak titik H ke garis DF adalah … cm. A $3\sqrt{5}$ B $2\sqrt{6}$ C $\sqrt{6}$ D $2\sqrt{3}$ E $\sqrt{3}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik H ke garis DF adalah panjang ruas garis HP. HF adalah diagonal sisi kubus, maka $HF=s\sqrt{2}=6\sqrt{2}$ DF adalah diagonal ruang kubus, maka $DF=s\sqrt{3}=6\sqrt{3}$ Perhatikan segitiga DHF, dengan menggunakan rumus luas segitiga maka $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \\ HP &= \frac{ \\ &= \frac{6\times 6\sqrt{2}}{6\sqrt{3}} \\ &= \frac{6\sqrt{2}}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ HP &= 2\sqrt{6} \end{align}$ Cara alternatif Jarak titik sudut kubus titik H ke diagonal ruang kubus garis DF adalah $\frac{s}{3}\sqrt{6} = \frac{6}{3}\sqrt{6} = 2\sqrt{6}$. Jawaban B Soal No. 3 Diketahui kubus dengan panjang rusuk 8 cm. Titik M adalah titik tengah rusuk BC. Jarak titik M ke garis EG adalah … cm. A 6 B $6\sqrt{2}$ C $6\sqrt{3}$ D $6\sqrt{6}$ E 12Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik M ke garis EG adalah panjang ruas garis MP. Perhatikan segitiga EBM. BE adalah diagonal sisi kubus, maka $BE=s\sqrt{2}=8\sqrt{2}$ $\begin{align}EM &= \sqrt{BE^2+BM^2} \\ &= \sqrt{8\sqrt{2}^2+4^2} \\ &= \sqrt{128+16} \\ &= \sqrt{144} \\ EM &= 12 \end{align}$ Perhatikan segitiga MCG. $\begin{align}GM &= \sqrt{CM^2+CG^2} \\ &= \sqrt{4^2+8^2} \\ &= \sqrt{16+64} \\ &= \sqrt{80} \\ GM &= 4\sqrt{5} \end{align}$ Perhatikan segitiga MEG, dengan menggunakan aturan cosinus maka $\begin{align}\cos \angle MEG &= \frac{EG^2+EM^2-GM^2}{ \\ &= \frac{8\sqrt{2}^2+12^2-4\sqrt{5}^2}{ \\ &= \frac{128+144-80}{192\sqrt{2}} \\ &= \frac{192}{192\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}} \\ \cos \angle MEG &= \frac{1}{2}\sqrt{2} \\ \angle MEG &= 45^\circ \end{align}$ Perhatikan segitiga MEG, dengan menggunakan rumus luas segitiga maka $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \angle MEG \\ MP &= EM.\sin 45^\circ \\ MP &= 12.\frac{1}{2}\sqrt{2} \\ MP &= 6\sqrt{2} \end{align}$ Jawaban B Soal No. 4 Diketahui kubus dengan panjang rusuk $\sqrt{3}$ cm dan titik T pada garis AD dengan panjang AT = 1 cm. Jarak titik A ke garis BT adalah … cm. A $\frac{1}{2}$ B $\frac{1}{3}\sqrt{3}$ C $\frac{1}{2}\sqrt{3}$ D 1 E $\frac{2}{3}\sqrt{3}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Perhatikan segitiga TAB, siku-siku di A maka $\begin{align}BT &= \sqrt{AB^2+AT^2} \\ &= \sqrt{\sqrt{3}^2+1^2} \\ BT &= 2 \end{align}$ Jarak titik A ke garis BT adalah panjang AP. $\begin{align}AP &= \frac{AB\times AT}{BT} \\ &= \frac{\sqrt{3}\times 1}{2} \\ AP &= \frac{1}{2}\sqrt{3} \end{align}$ Jawaban C Soal No. 5 Pada kubus dengan panjang rusuk 4 cm, titik P terletak di tengah-tengah EH. Jarak titik P ke garis BG adalah ... cm. A $2\sqrt{2}$ B $2\sqrt{3}$ C $3\sqrt{2}$ D $3\sqrt{3}$ E $2\sqrt{5}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik P ke garis BG adalah panjang ruas garis PQ. Perhatikan segitiga BEP, siku-siku di titik E. BE adalah diagonal sisi kubus, maka $BE=s\sqrt{2}=4\sqrt{2}$ $\begin{align}BP &= \sqrt{BE^2+EP^2} \\ &= \sqrt{4\sqrt{2}^2+2^2} \\ &= \sqrt{32+4} \\ &= \sqrt{36} \\ BP &= 6 \end{align}$ Perhatikan segitiga PHG, siku-siku di titik H. $\begin{align}PG &= \sqrt{HP^2+HG^2} \\ &= \sqrt{2^2+4^2} \\ &= \sqrt{20} \\ PG &= 2\sqrt{5} \end{align}$ BG adalah diagonal sisi kubus, maka $BG=s\sqrt{2}=4\sqrt{2}$ Perhatikan segitiga BGP Arutan cosinus $\begin{align}\cos \angle BGP &= \frac{BG^2+GP^2-BP^2}{ \\ &= \frac{4\sqrt{2}^2+2\sqrt{5}^2-6^2}{ \\ &= \frac{32+20-36}{16\sqrt{10}} \\ &= \frac{16}{16\sqrt{10}} \\ \cos \angle BGP &= \frac{1}{\sqrt{10}} \end{align}$ $\sin \angle BGP = \frac{\sqrt{\sqrt{10}^2-1^2}}{\sqrt{10}} = \frac{3}{\sqrt{10}}$ Dengan menggunakan luas segitiga BPG maka $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \angle BGP \\ PQ &= GP.\sin \angle BGP \\ &= 2\sqrt{5}.\frac{3}{\sqrt{10}} \\ &= \frac{6}{\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}} \\ PQ &= 3\sqrt{2} \end{align}$ Jawaban C Soal No. 6 Diketahui kubus dengan panjang rusuknya 6 cm. Jika titik P berada pada perpanjangan garis HG sehingga HG = GP, maka jarak titik G ke garis AP adalah ... cm. A $\sqrt{6}$ B $2\sqrt{3}$ C $2\sqrt{6}$ D $4\sqrt{3}$ E $4\sqrt{6}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik G ke garis AP adalah panjang ruas garis GQ. AH adalah diagonal sisi kubus, maka $AH=s\sqrt{2}=6\sqrt{2}$ $\begin{align}AP &= \sqrt{AH^2+HP^2} \\ &= \sqrt{\left 6\sqrt{2} \right^2+12^2} \\ &= \sqrt{72+144} \\ &= \sqrt{216} \\ AP &= 6\sqrt{6} \end{align}$ Segitiga AHP sebangun dengan segitiga GQP, maka perbandingan sisi-sisi yang bersesuaian adalah $\begin{align}\frac{GQ}{AH} &= \frac{GP}{AP} \\ \frac{GQ}{6\sqrt{2}} &= \frac{6}{6\sqrt{3}} \\ GQ &= \frac{6\sqrt{2}}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ GQ &= 2\sqrt{6} \end{align}$ Jawaban C Soal No. 7 Panjang rusuk kubus adalah 5 cm. Jarak titik G ke diagonal HB adalah ... cm. A $\frac{5}{3}\sqrt{6}$ B $\frac{4}{3}\sqrt{6}$ C $\sqrt{6}$ D $\frac{2}{3}\sqrt{6}$ E $\frac{1}{3}\sqrt{6}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik G ke garis HB adalah panjang ruas garis GP. Perhatikan segitiga BCG siku-siku di titik C, maka $\begin{align}BG &= \sqrt{BC^2+CG^2} \\ &= \sqrt{5^2+5^2} \\ &= \sqrt{50} \\ BG &= 5\sqrt{2} \end{align}$ Perhatikan segitiga BGH siku-siku di titik G, maka $\begin{align}HB &= \sqrt{BG^2+GH^2} \\ &= \sqrt{\left 5\sqrt{2} \right^2+5^2} \\ &= \sqrt{50+25} \\ &= \sqrt{75} \\ HB &= 5\sqrt{3} \end{align}$ Luas segitiga BGH $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \\ &= \\ 5\sqrt{3}.GP &= \\ GP &= \frac{5\sqrt{2}}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ GP &= \frac{5}{3}\sqrt{6} \end{align}$ Jadi, jarak titik G ke garis HB adalah $\frac{5}{3}\sqrt{6}$ cm. Jawaban A Soal No. 8 Kubus dengan AB = 6, jarak titik B ke diagonal AG adalah ... A $5\sqrt{6}$ B $4\sqrt{6}$ C $3\sqrt{6}$ D $2\sqrt{6}$ E $\sqrt{2}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik B ke garis AG adalah panjang ruas garis BP. Perhatikan segitiga BCG siku-siku di titik C, maka $\begin{align}BG^2 &= BC^2+CG^2 \\ &= 6^2+6^2 \\ BG^2=72 \end{align}$ Perhatikan segitiga ABG siku-siku di titik B, maka $\begin{align}AG &= \sqrt{AB^2+BG^2} \\ &= \sqrt{6^2+\left 6\sqrt{2} \right^2} \\ &= \sqrt{36+72} \\ &= \sqrt{108} \\ AG &= 6\sqrt{3} \end{align}$ Luas segitiga ABG $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \\ &= \\ 6\sqrt{3}.BP &= \\ BP &= \frac{6\sqrt{2}}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ BP &= 2\sqrt{6} \end{align}$ Jawaban D Soal No. 9 Limas beraturan dengan panjang rusuk alas 12 cm dan panjang rusuk tegak $12\sqrt{2}$ cm. Jarak titik A ke garis TC adalah ... cm A $6\sqrt{6}$ B $2\sqrt{10}$ C $2\sqrt{11}$ D $4\sqrt{3}$ E $2\sqrt{13}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik A ke garis TC adalah panjang ruas garis AK. perhatikan segitiga ABC siku-siku di titik C maka $\begin{align}AC &= \sqrt{AB^2+BC^2} \\ &= \sqrt{12^2+12^2} \\ &= \sqrt{{{ \\ AC &= 12\sqrt{2} \end{align}$ Perhatikan segitiga TAC AT = $12\sqrt{2}$, $AC=12\sqrt{3}$ Karena AT = AC dan AK adalah garis tinggi terhadap TC, maka AK membagi dua sama panjang garis TC sehingga kita peroleh $\begin{align}CK &= \frac{1}{2}TC \\ &= \frac{1}{2}.12\sqrt{2} \\ CK &= 6\sqrt{2} \end{align}$ Perhatikan segitiga AKC siku-siku di titik K maka berlaku pythagoras $\begin{align}AK &= \sqrt{AC^2-CK^2} \\ &= \sqrt{\left 12\sqrt{2} \right^2-\left 6\sqrt{2} \right^2} \\ &= \sqrt{288-72} \\ &= \sqrt{216} \\ AK &= 6\sqrt{6} \end{align}$ Jadi, jarak titik A ke garis TC adalah $6\sqrt{6}$ cm. Jawaban A Soal No. 10 Kubus dengan AB = 6 cm, titik P berada di tengah-tengah FG, maka jarak titik A ke garis DP adalah ... cm. A 6 B $6\sqrt{2}$ C $6\sqrt{3}$ D $6\sqrt{6}$ E $4\sqrt{2}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik A ke garis DP adalah panjang ruas garis AQ. AF adalah diagonal sisi kubus maka $AF=s\sqrt{2}=6\sqrt{2}$ Perhatikan segitiga PRD siku-siku di titik R maka $PR=AF=6\sqrt{2}$ $\begin{align}PD &= \sqrt{PR^2+RD^2} \\ &= \sqrt{\left 6\sqrt{2} \right^2+3^2} \\ &= \sqrt{72+9} \\ &= \sqrt{81} \\ PD &= 9 \end{align}$ Perhatikan segitiga APD, maka luas segitiga APD $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \\ &= \\ &= \\ AD &= 6 \end{align}$ Jawaban A Soal No. 11 Diketahui kubus dengan panjang rusuk 6 cm. Jika T titik tengah HG, R titik tengah CG, maka jarak R ke BT adalah ... cm A $\sqrt{10}$ B $3\sqrt{5}$ C $\frac{9}{5}$ D $3\sqrt{2}$ E 3Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik R ke garis BT adalah panjang ruas garis PR. Segitiga BCR siku-siku di titik C, maka $\begin{align}BR &= \sqrt{BC^2+CR^2} \\ &= \sqrt{6^2+3^2} \\ &= \sqrt{36+9} \\ &= \sqrt{45} \\ BR &= 3\sqrt{5} \end{align}$ Segitiga RGT siku-siku di titik G, maka $\begin{align}RT &= \sqrt{RG^2+GT^2} \\ &= \sqrt{3^2+3^2} \\ &= \sqrt{18} \\ RT &= 3\sqrt{2} \end{align}$ BG diagonal sisi kubus, maka $BG=6\sqrt{2}$. Segitiga BGT siku-siku di titik G, maka $\begin{align}BT &= \sqrt{BG^2+GT^2} \\ &= \sqrt{\left 6\sqrt{2} \right^2+3^2} \\ &= \sqrt{72+9} \\ &= \sqrt{81} \\ BT &= 9 \end{align}$ Pada segitiga BRT, berlaku aturan cosinus sebagai berikut $\begin{align}\cos \angle RBT &= \frac{BR^2+BT^2-RT^2}{ \\ &= \frac{\left 3\sqrt{5} \right^2+9^2-\left 3\sqrt{2} \right^2}{ \\ &= \frac{45+81-18}{54\sqrt{5}} \\ &= \frac{108}{54\sqrt{5}} \\ \cos \angle RBT &= \frac{2}{\sqrt{5}} \end{align}$ Dengan perbandingan trigonometri diperoleh $\sin \angle RBT = \frac{\sqrt{\sqrt{5}^2-2^2}}{\sqrt{5}} = \frac{1}{\sqrt{5}}$ Luas segitiga RBT $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \angle RBT \\ PR &= BR.\sin \angle RBT \\ PR &= 3\sqrt{5}.\frac{1}{\sqrt{5}} \\ PR &= 3 \end{align}$ Jadi, jarak titik R ke BT adalah 3 cm. Jawaban E Soal No. 12 SIMAK UI 2009 Kode 934. Diketahui kubus dengan panjang sisi 5 cm. Jarak titik B ke diagonal EG adalah ... cm. A $\frac{5}{2}\sqrt{3}$ B $\frac{5}{2}\sqrt{6}$ C $5\sqrt{3}$ D $128\sqrt{3}$ E $3\sqrt{2}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik B ke diagonal EG adalah panjang ruas garis BP. BE, BG, dan EG adalah diagonal sisi kubus maka BE = BG = EG = $s\sqrt{2}=5\sqrt{2}$ Karena BE = BG dan BP adalah garis tinggi terhadap sisi EG maka BP membagi dua sama panjang garis EG sehingga diperoleh $\begin{align}EP &= \frac{1}{2}EG \\ &= \frac{1}{2}.5\sqrt{2} \\ EP &= \frac{5\sqrt{2}}{2} \end{align}$ Perhatikan segitiga BPE siku-siku di titik P maka $\begin{align}BP &= \sqrt{BE^2-EP^2} \\ &= \sqrt{\left 5\sqrt{2} \right^2-\left \frac{5\sqrt{2}}{2} \right^2} \\ &= \sqrt{50-\frac{50}{4}} \\ &= \sqrt{\frac{150}{4}} \\ &= \sqrt{\frac{25\times 6}{4}} \\ BP &= \frac{5}{2}\sqrt{6} \end{align}$ Jadi, jarak titik B ke diagonal EG adalah $\frac{5}{2}\sqrt{6}$ cm. Jawaban B Soal No. 13 SIMAK UI 2010 Kode 508. Diberikan prisma tegak segitiga siku-siku dengan alas $\Delta ABC$ siku-siku di B. Panjang rusuk tegak prisma $2\sqrt{2}$ satuan, panjang AB = panjang BC = 4 satuan, maka jarak A ke EF adalah ... satuan. A 4 B $4\sqrt{2}$ C $4\sqrt{3}$ D $2\sqrt{6}$ E $4\sqrt{6}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Bidang ABED tegak lurus dengan bidang BCFE. AE terletak pada bidang ABED dan EF terletak pada bidang BCFE maka $AE\bot EF$. Perhatikan segitiga AEF siku-siku di titik E, maka jarak titik A ke garis EF adalah panjang ruas garis AE. Untuk menghitung panjang AE perhatikan segitiga ABD siku-siku di titik B, maka $\begin{align}AE &= \sqrt{AB^2+BE^2} \\ &= \sqrt{4^2+\left 2\sqrt{2} \right^2} \\ &= \sqrt{16+8} \\ &= \sqrt{24} \\ AE &= 2\sqrt{6} \end{align}$ Jadi, jarak titik A ke EF adalah $2\sqrt{6}$ cm. Jawaban D Soal No. 14 Diberikan bidang empat beraturan dengan panjang rusuk 12 cm. Jika titik P adalah titik tengah rusuk BC, maka jarak titik P ke garis AT adalah ... cm. A $3\sqrt{2}$ B $4\sqrt{2}$ C $6\sqrt{2}$ D $6\sqrt{3}$ E $4\sqrt{3}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik P ke garis AT adalah panjang ruas garis PQ. Perhatikan segitiga TBC, karena TA = TB dan titik P membagi dua sama panjang sisi BC, maka $TP\bot BC$. Perhatikan segitiga TPC siku-siku di titik P maka $\begin{align}TP &= \sqrt{TC^2-PC^2} \\ &= \sqrt{12^2-6^2} \\ &= \sqrt{144-36} \\ &= \sqrt{108} \\ TP &= 6\sqrt{3} \end{align}$ Perhatikan segitiga ABC, karena AB = AC dan titik P membagi dua sama panjang sisi BC, maka $AP\bot BC$ Perhatikan segitiga BPA siku-siku di titik P maka $\begin{align}AP &= \sqrt{AB^2-BP^2} \\ &= \sqrt{12^2-6^2} \\ &= \sqrt{144-36} \\ &= \sqrt{108} \\ AP &= 6\sqrt{3} \end{align}$ Perhatikan segitiga TPA, karena AP = TP dan $PQ\bot AT$ maka TQ membagi dua sama panjang garis AT sehingga kita peroleh $AQ=\frac{1}{2}AT=\frac{1}{2}\times 12=6$ Segitiga AQP siku-siku di titik Q maka $\begin{align}PQ &= \sqrt{AP^2-AQ^2} \\ &= \sqrt{\left 6\sqrt{3} \right^2-6^2} \\ &= \sqrt{108-36} \\ &= \sqrt{72} \\ PQ &= 6\sqrt{2} \end{align}$ Jadi, jarak titik P ke garis AT adalah $6\sqrt{2}$ cm. Jawaban C Soal No. 15 Diketahui balok dengan AB = AD = 6 cm dan AE = $6\sqrt{2}$ cm. Jika K titik tengah EG maka jarak titik H ke garis DK adalah ... cm. A $\sqrt{5}$ B $\frac{3}{5}\sqrt{5}$ C $\frac{6}{5}\sqrt{5}$ D $\frac{3}{5}\sqrt{10}$ E $\frac{6}{5}\sqrt{10}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik H ke garis DK adalah panjang ruas garis HL. Pada segitiga HEF siku-siku di titik E maka $\begin{align}HF &= \sqrt{HE^2+EF^2} \\ &= \sqrt{6^2+6^2} \\ &= \sqrt{72} \\ HF &= 6\sqrt{2} \end{align}$ Titik K di tengah EG maka K juga ditengah HF. $HK=\frac{1}{2}HF=\frac{1}{2}.6\sqrt{2}=3\sqrt{2}$ Segitiga DHK siku-siku di titik H, maka $\begin{align}DK &= \sqrt{HK^2+DH^2} \\ &= \sqrt{\left 3\sqrt{2} \right^2+\left 6\sqrt{2} \right^2} \\ &= \sqrt{18+72} \\ &= \sqrt{90} \\ DK &= 3\sqrt{10} \end{align}$ Luas segitiga DHK $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \\ &= \\ 3\sqrt{10}.HL &= 6\sqrt{2}.3\sqrt{2} \\ HL &= \frac{12}{\sqrt{10}}\times \frac{\sqrt{10}}{\sqrt{10}} \\ HL &= \frac{12}{10}\sqrt{10} \\ HL &= \frac{6}{5}\sqrt{10} \end{align}$ Jadi, jarak titik H ke garis DK adalah $\frac{6}{5}\sqrt{10}$ cm. Jawaban E Soal No. 16 Diketahui kubus yang panjang rusuknya 6 cm. Titik P, Q, dan R berturut-turut merupakan titik tengah rusuk EH, BF, dan CG. Jarak titik P ke garis QR adalah ... cm. A $3\sqrt{7}$ B $3\sqrt{6}$ C $3\sqrt{5}$ D $3\sqrt{3}$ E $2\sqrt{3}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik P ke garis QR adalah panjang ruas garis PS. Karena PQ = PR dan $PS\bot QR$ maka PS membagi dua sama panjang garis QR. Perhatikan, PS dan EQ terletak pada satu bidang. EQ sejajar dengan PS, dan PS = EQ. Perhatikan segitiga EFQ siku-siku di titik F maka $\begin{align}EQ &= \sqrt{EF^2+FQ^2} \\ &= \sqrt{6^2+3^2} \\ &= \sqrt{36+9} \\ &= \sqrt{45} \\ EQ &= 3\sqrt{5} \end{align}$ PS = EQ = $3\sqrt{5}$ Jadi, jarak titik P ke garis QR adalah $3\sqrt{5}$ cm. Jawaban C Soal No. 17 Diketahui limas beraturan dengan rusuk alas $a\sqrt{2}$ cm dan rusuk tegaknya $2a$ cm. Jika O adalah perpotongan diagonal AC dan BD, maka jarak O ke garis TC adalah ... cm. A $\frac{1}{2}a\sqrt{3}$ B $\frac{1}{2}a\sqrt{2}$ C $\frac{1}{3}a\sqrt{3}$ D $\frac{1}{3}a\sqrt{2}$ E $\frac{1}{2}a\sqrt{6}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! $\begin{align}AC &= \sqrt{AB^2+BC^2} \\ &= \sqrt{\left a\sqrt{2} \right^2+\left a\sqrt{2} \right^2} \\ &= \sqrt{4a^2} \\ AC &= 2a \end{align}$ $OC=\frac{1}{2}AC=\frac{1}{2}.2a=a$ Perhatikan segitiga TOC siku-siku di titik O maka $\begin{align}OT &= \sqrt{TC^2-OC^2} \\ &= \sqrt{2a^2-a^2} \\ &= \sqrt{3a^2} \\ OT &= a\sqrt{3} \end{align}$ Luas segitiga TOC $\begin{align}\frac{1}{2}\times TC\times OP &= \frac{1}{2}\times OT\times OC \\ TC\times OP &= OT\times OC \\ 2a\times OP &= a\sqrt{3}\times a \\ OP &= \frac{1}{2}a\sqrt{3} \end{align}$ Jadi, jarak titik O ke garis TC adalah $\frac{1}{2}a\sqrt{3}$ cm. Jawaban A Soal No. 18 Diketahui kubus dengan rusuk 8 cm. M adalah titik tengah EH. Jarak titik M ke AG adalah ... cm. A $4\sqrt{6}$ B $4\sqrt{5}$ C $4\sqrt{3}$ D $4\sqrt{2}$ E 4Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik M ke AG adalah panjang ruas garis MN. Perhatikan segitiga AEM siku-siku di titik E maka $\begin{align}AM &= \sqrt{AE^2+EM^2} \\ &= \sqrt{8^2+4^2} \\ &= \sqrt{64+16} \\ &= \sqrt{80} \\ AM &= 4\sqrt{5} \end{align}$ MG = $AM=4\sqrt{5}$ AG adalah diagonal ruang kubus, maka $AG=s\sqrt{3}=8\sqrt{3}$. Segitiga AMG segitiga sama kaki AM=MG, maka MN adalah garis tinggi yang membagi dua AG di titik N, maka $\begin{align}AN &= \frac{1}{2}.AG \\ &= \frac{1}{2}.8\sqrt{3} \\ AN &= 4\sqrt{3} \end{align}$ Segitiga ANM siku-siku di titik N maka $\begin{align}MN &= \sqrt{AM^2-AN^2} \\ &= \sqrt{\left 4\sqrt{5} \right^2-\left 4\sqrt{3} \right^2} \\ &= \sqrt{80-48} \\ &= \sqrt{32} \\ MN &= 4\sqrt{2} \end{align}$ Jadi, jarak titik M ke AG adalah $4\sqrt{2}$ cm. Jawaban D Soal No. 19 Limas pada gambar di bawah. Merupakan limas segitiga beraturan, jarak titik T ke AD adalah ... A $4\sqrt{3}$ B $6\sqrt{3}$ C 11 D $\sqrt{133}$ E 12Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik T ke AD adalah panjang ruas garis TO. Segitiga BDA siku-siku di titik D maka $\begin{align}AD &= \sqrt{AB^2-BD^2} \\ &= \sqrt{12^2-6^2} \\ &= \sqrt{144-36} \\ &= \sqrt{108} \\ AD &= 6\sqrt{3} \end{align}$ Segitiga TDC siku-siku di titik D maka $\begin{align}TD &= \sqrt{TC^2-DC^2} \\ &= \sqrt{13^2-6^2} \\ &= \sqrt{169-36} \\ TD &= \sqrt{133} \end{align}$ Dengan aturan cosinus pada segitiga TAD maka $\begin{align}\cos \angle TAD &= \frac{TA^2+AD^2-TD^2}{ \\ &= \frac{13^2+\left 6\sqrt{3} \right^2-\left \sqrt{133} \right^2}{ \\ &= \frac{169+108-133}{156\sqrt{3}} \\ &= \frac{144}{156\sqrt{3}} \\ \cos \angle TAD &= \frac{12}{13\sqrt{3}} \end{align}$ Dengan perbandingan trigonometri $\begin{align}\sin \angle TAD &= \frac{\sqrt{\left 13\sqrt{3} \right^2-12^2}}{13\sqrt{3}} \\ &= \frac{\sqrt{507-144}}{13\sqrt{3}} \\ &= \frac{\sqrt{363}}{13\sqrt{3}} \\ &= \frac{11\sqrt{3}}{13\sqrt{3}} \\ \sin \angle TAD &= \frac{11}{13} \end{align}$ Luas segitiga TAD $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \angle TAD \\ TO &= AT.\sin \angle TAD \\ TO &= 13.\frac{11}{13} \\ TO &= 11 \end{align}$ Jadi, jarak titik T ke AD adalah 11 cm. Jawaban C Soal No. 20 Prisma segi-4 beraturan dengan rusuk 6 cm dan tinggi prisma 8 cm. Titik potong diagonal AC dan BD adalah T. Jarak titik D dan TH = ... cm. A $\frac{12}{41}\sqrt{41}$ B $\frac{24}{41}\sqrt{41}$ C $\frac{30}{41}\sqrt{41}$ D $\frac{36}{41}\sqrt{41}$ E $2\sqrt{41}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik D dan TH adalah panjang ruas garis PD. Segitiga BAD siku-siku di titik A maka $\begin{align}BD &= \sqrt{BA^2+AD^2} \\ &= \sqrt{6^2+6^2} \\ &= \sqrt{72} \\ BD &= 6\sqrt{2} \end{align}$ $\begin{align}TD &= \frac{1}{2}BD \\ &= \frac{1}{2}.6\sqrt{2} \\ TD &= 3\sqrt{2} \end{align}$ Segitiga TDH siku-siku di titik D maka $\begin{align}TH &= \sqrt{TD^2+DH^2} \\ &= \sqrt{\left 3\sqrt{2} \right^2+8^2} \\ &= \sqrt{18+64} \\ TH &= \sqrt{82} \end{align}$ Luas segitiga TDH $\begin{align}\frac{1}{2}\times TH\times PD &= \frac{1}{2}\times TD\times DH \\ TH\times PD &= TD\times DH \\ \sqrt{82}\times PD &= 3\sqrt{2}\times 8 \\ PD &= \frac{24}{\sqrt{41}}\times \frac{\sqrt{41}}{\sqrt{41}} \\ PD &= \frac{24}{41}\sqrt{41} \end{align}$ Jadi, jarak titik D dan TH adalah $\frac{24}{41}\sqrt{41}$. Jawaban B Subscribe and Follow Our Channel